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Abstract. We study screening effects of a three- and two-dimensional charged Bose condensate
on the binding energy of a hydrogenic impurity. Many-body effects are taken into account via a
local-field correction. The variational method and the matrix diagonalization method are used to
calculate the energies of the ground state and of excited states as functions of the condensate density.
With increasing boson density the binding energies decrease and vanish at a critical density. For a
given density, Bose condensate screening is found to be more efficient than electron screening and
the binding energies vanish at a lower density than for electron screening.

1. Introduction

The reduction of the binding energy of a hydrogenic impurity due to electron screening was
studied extensively in the past [1–9]. Such calculations are important for impure metals and
doped semiconductors. The binding energy was calculated by using different approximations
for the screening function. The effect of screening by an electron gas on a single charged
impurity in three dimensions (3D) [1–6] and in two dimensions (2D) [5–9] was considered.
In 3D it was found that the binding energy of a positively charged impurity vanishes if the
screening density of electrons is larger than a critical density, the Mott density. In contrast to
this it was shown in 2D that the binding energy is always finite, even if the electron density
becomes very high [8].

In this paper we consider the binding energy of a single hydrogenic impurity screened by a
charged Bose condensate (BC) in 3D and 2D. A 2D charged BC might be considered as a model
for high-Tc superconductors [10]. A 3D charged BC has applications in astrophysics [11].
The recent discovery of Bose condensation of atoms (neutral particles) and the observation of
collective modes [12] has motivated a huge theoretical activity in order to understand better
the physical properties of BCs.

A charged BC is a basic system in statistical physics where many-body effects are currently
studied [13–21]. Of special interest are the screening properties of a BC and how they compare
with the screening properties of an electron gas. The screening effects of a BC on the binding
energy of a hydrogenic impurity represent a new version of screening for a known physical
problem. Comparing with screening properties of an electron gas, we find for boson screening
new quantitative and qualitative results in 3D and in 2D.
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In the present paper we show how the random-phase approximation (RPA) [22], which is
the mean-field approximation, is modified by correlation effects. These many-body effects are
described by the local-field correction (LFC). The LFC is important to get correct expressions
for the test-charge–boson and test-charge–test-charge interactions when the screening gas
density is not high enough for the RPA to be valid [22].

In section 2 we describe the model and the theory. The results of a single hydrogenic
impurity screened by a 3D-BC are described in section 3. The corresponding results for a
2D-BC are given in section 4. Our results are discussed in section 5 and we conclude in
section 6.

2. Model and theory

2.1. Model

As the model system we use a Bose gas with a parabolic dispersion and densityNd in dimension
d = 3 andd = 2. All particles are assumed to have condensed to the lowest energy and form
a BC. Distances are expressed in units of the effective Bohr radiusa∗ = εL/m

∗e2 with the
Planck constanth/2π = 1. m∗ is the effective mass of the bosons andεL is the dielectric
constant of the background material. Energy values are expressed in units of the effective
Rydberg Ry∗ = m∗e4/2ε2

L. The density parameterrs is given byrs = [3/4πN3a
∗3]1/3 for 3D

and byrs = [1/πN2a
∗2]1/2 for 2D.

We consider a jellium model: we assume that the BC is negatively charged and a
homogeneous positive background charge ensures charge neutrality. The Coulomb interaction
potential between the bosons is given in the Fourier space byV (q) = 4πe2/εLq

2 in 3D and
by V (q) = 2πe2/εLq in 2D. The Coulomb interaction potential between two particles with
opposite charges is attractive and given by the bare (b) Coulomb potentialVb(q) = −V (q).

In the following we study the test-charge–test-charge and the test-charge–boson
interactions. For simplicity, the Bose particles and test-charges are assumed to hold an
elementary charge±e. For specific cases, the effective Bohr radius and the effective Rydberg,
defined above, should be rescaled according to the charges and masses under consideration.

2.2. The screened Coulomb interaction

The screened test-charge–test-charge (tt) interactionVtt,sc(q) is given in terms of the screening
functionεtt (q) by

Vtt,sc(q) = Vb(q)

εtt (q)
. (1)

We assume that the twotest-chargesare distinct from the boson gas providing the screening.
The dielectric functionεtt (q) is given by 1/εtt (q) = [1 − V (q)G(q)X0(q)]/[1 + V (q)[1 −
G(q)]X0(q)] whereG(q) is the LFC.

X0(q) = 4Nm∗/q2 is the static density–density response function of the free BC [13].
The divergent behaviour of the response function of the BC forq → 0 is due to the Bose
condensation of the particles. For small wavenumbers the static density–density response
function of a free BC is much larger than for a free electron gas, whereX0(q → 0) = ρF and
ρF is the density of states at the Fermi energy.

The screened test-charge–boson (tb) interactionVtb,sc(q) is written as

Vtb,sc(q) = Vb(q)

εtb(q)
. (2)
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For the test-charge–boson (tb) interaction one gets 1/εtb(q) = 1/[1 +V (q)[1−G(q)]X0(q)].
In fact, the expressions for 1/εtt (q) and 1/εtb(q) were derived [23] for electron screening, but
it can be shown easily that they also hold for screening due to Bose particles.

In the following we useG2(q) andG3(q) for the LFC in 2D and 3D, respectively. For 3D
the dielectric function for the test-charge–test-charge interaction is given by

1

εtt (q)
= 1−G3(q)q

4
3/q

4

1 +q4
3[1−G3(q)]/q4

(3a)

with q3a
∗ = 121/4/r

3/4
s . 1/q3 is the relevant length scale for screening in the 3D-BC and

depends on the density viars . The dielectric function in 2D is expressed as

1

εtt (q)
= 1−G2(q)q

3
2/q

3

1 +q3
2[1−G2(q)]/q3

(3b)

with q2a
∗ = 2/r2/3

s and 1/q2 is the relevant length scale for screening in the 2D-BC.
For the test-charge–boson interaction one finds

1

εtb(q)
= 1

1 +q4
3[1−G3(q)]/q4

(4a)

in 3D and
1

εtb(q)
= 1

1 +q3
2[1−G2(q)]/q3

(4b)

in 2D.
For rs � 1 the LFC can be neglected. WithG(q) = 0 one then gets the familiar RPA

expressionεRPA(q) = 1+V (q)X0(q)withVRPA(q) = Vb(q)/εRPA(q) and the three dielectric
functions are equal:εtt (q) = εtb(q) = εRPA(q). Forrs > 1 εtb(q) takes a different form than
εtt (q) to account for the indistinguishability of the bosons.

In our calculation of the LFC we use the sum-rule approximation [19] of the
Singwi–Tosi–Land–Sjölander (STLS) approach [24]. In the sum-rule approach the LFC is
parametrized by three coefficientsCid(rs) (i = 1, 2, 3). For the 3D-BC the LFC is written as

G3(q) = r3/4
s

0.846q2

2.188q2
3C13(rs) + q2C23(rs)− q3qC33(rs)

. (5a)

For the 2D electron gas the LFC is given by

G2(q) = r2/3
s

1.402q

[2.644q2
2C12(rs)2 + q2C22(rs)2 − q2qC32(rs)]1/2

. (5b)

The coefficients are determined as for electrons [25].C1d(rs) is determined from the
compressibility of the condensate calculated within the STLS approach. The STLS approach
describes the pair correlation functiong(r = 0) by the LFC for large wave numbers via
G(q →∞) = 1− g(r = 0): this definesC2d(rs). The coefficientC3d(rs) is calculated using
the relation betweeng(r = 0) and the static structure factor. Therefore the LFC fulfils the
compressibility sum rule. Details will be published elsewhere [26].

2.3. Bound states

The Schr̈odinger equation for a particle with reduced massm∗ in the screened potential is
solved numerically in the momentum space. The Schrödinger equation in the momentum
space is given by

q2

2m∗
ψ(q) +

1

(2π)d

∫
ddq′Vsc(q − q′)ψ(q′) = Eψ(q). (6)
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The equation (6) is suitably discretized according toq andq′ under the form of a matrix.
In equation (6) and in the followingVsc(q) representsVRPA(q), Vtb,sc(q) or Vtt,sc(q). The
eigenenergy and eigenfunction problem is then solved numerically by a standard method for
matrix diagonalization. Details can be found in [5].

For 3D the wave functionψ(r) is given byφnr l(r)Ylm(ϕ, θ). The degeneracy of these states
isgl = 2l+1. φnr l(r) is the solution of the radial Schrödinger equation for the effective potential
Veff (r) = Vl(r) + Vsc(r) with Vl(r) = l(l + 1)/2m∗r2. For 2D,ψ(r) = φnr l(r) exp[±ilϕ]
with degeneracygl = 1 for l = 0 andgl = 2 for l > 0. φnr l(r) is the radial function for the
effective potentialVeff (r) = Vl(r) + Vsc(r) with Vl(r) = l2/2m∗r2. In the momentum space
the wave function is written in the same way as in the real space asψ(q) = φnr l(q) exp(±ilϕ).
In the following we will useφ(r) instead ofφnr l(r).

For the bound state energies, we find excellent agreement between the matrix
diagonalization method and the variational method. For the ground state, the 1s state, we
use

φ1v(r) = A e−r/2ν (7)

with the variational parameterν. For the first excited state, the 2s state, we use

φ2v(r) = A(1− rD) e−r/2κ (8a)

with κ as the variational parameter.D is determined by the condition〈φ1v|φ2v〉 = 0. For the
second excited state, the 2p state, we use

φ3v(r) = Are−r/2µ (8b)

with µ as the variational parameter. All these variational wave functions arehydrogenic-like
wave functions where the spatial extension parametersν, κ andµ are variational.

In the following we present results for bound states using the RPA, the tb- and the tt-
interaction. In general we only find bound states forrs larger than a critical valuersc. The
RPA results demonstrate the importance of many-body effects described by the LFC.

3. Results for three dimensions

3.1. The screened potential

In the real space the screened Coulomb interaction in 3D is given by

Vsc(r) = 1

2π2r

∫ ∞
0

dq q sin(qr)Vsc(q). (9)

Within the RPA the screened potential can be calculated analytically. Puttingx = rq3 one
obtains

VRPA(x) = −2Ry∗121/4

r
3/4
s

{
1

x
exp(−x/21/2) cos(x/21/2)

}
. (10)

The energy scale ofVRPA(x) depends on Ry∗/r3/4
s , while the characteristic lengthr0 is given

by x0 = r0q3 ≈ 1, which meansr0 ≈ 1/q3 ∝ r3/4
s . VRPA(r) shows very interesting features,

namely (i) Coulomb attraction at small distances, (ii) exponential screening at intermediate
distances and (iii) oscillating behaviour at large distances. It merits on its own a detailed study.
For the BC the characteristic lengthr0 is related to the density of the condensate throughrs .
We mention that for electron screening within the RPA the screened potential exhibits the
same features. In particular, Friedel’s oscillations also define a characteristic length given by
r0kF ≈ 1, i.e.r0 ≈ 1/kF ∝ rs . HerekF is the wavenumber at the Fermi level. However, in
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the electron case,VRPA cannot be given in analytical form. Therefore, the charged BC is a
useful model system to discuss screening effects in quantum liquids.

The screened potential can be characterized by four lengthsri (i = 1–4), which are all
connected tor0: VRPA(r) has a Coulomb singularity forr → 0,VRPA(r1) = 0 for

r1/a
∗ = 1.194r3/4

s (11a)

it shows a maximumVRPA(r2)/Ry∗ = 0.0781/r3/4
s for r2/a∗ = 1.650r3/4

s , it vanishes again
VRPA(r3) = 0 for r3/a∗ = 3.581r3/4

s , and it shows a minimum

VRPA(r4)/Ry∗ = −0.001 39/r3/4
s (11b)

for

r4/a
∗ = 4.113r3/4

s . (11c)

At very low densities, corresponding tors →∞ or q3 → 0, the potential is unscreened
and the bound state energies are those of the 3D hydrogen atom: the 1s state has a binding
energy of−1Ry∗ and a spatial extensionν = 0.5a∗. The lengthr1 is a good criterion for
screening: ifr1 < a∗ a strong reduction of the binding energy is expected due to screening
effects.

Vsc(r) versusr is shown in figure 1 forrs = 2. For rs = 2 the differences between
VRPA(r), Vtb,sc(r) andVtt,sc(r) are small, however already visible. For very small distances
the Coulomb attraction becomes dominant. The valuesr1 andr2 can be seen in figure 1 and
exist forVRPA(r), Vtb,sc(r) andVtt,sc(r).

Figure 1. Screened potentialVsc(r) versus distancer for rs = 2 in 3D. The solid and dot–
dashed line represents the test-charge–test-charge (tt) and the test-charge–boson (tb) interaction,
respectively. The dashed line represents the RPA.

3.2. Bound states within the RPA

Within the variational approach, the binding energies of the 1s state, and for the 2s and 2p states
for some largers values, are given in table 1 for boson screening and electron screening. It is
interesting to note that the binding energies for low densities are independent of the statistical
properties of the quantum liquid that supplies the screening.

For rs < 4 the BC screening is more efficient than the electron screening and the binding
energy vanishes at a higherrs-value; see table 1. Thers-value for which the binding energy
vanishes is denoted as the critical density parameterrsc, see figure 2. Obviously,rsc depends on
the bound state which we consider. The smallest value forrsc is found for the ground state. The
corresponding density is called Mott’s [1] critical densityN3c, originally found for electrons.
It is given byN1/3

3c a
∗ = (3/4π)1/3/rsc. For the 1s-state in a BC we getN1/3

3c a
∗ = 0.24. For

the excited states the values forrsc are also given in table 1.
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Table 1. Binding energies in 3D for the 1s, 2s and 2p state found by the variational method within
the RPA for screening by charged bosons and by charged fermions [5]. In the last row we give the
valuesrsc where the binding energy vanishes.

Boson Fermion
binding energy (Ry∗) binding energy (Ry∗)

rs 1s 2s 2p 1s 2s 2p

3 −0.061 — — −0.095 — —
5 −0.292 — — −0.289 — —

10 −0.551 — — −0.537 — —
20 −0.726 −0.019 −0.008 −0.716 −0.012 −0.001
40 −0.836 −0.096 −0.093 −0.830 −0.091 −0.088

100 −0.917 −0.168 −0.168 −0.915 −0.167 −0.166
1000 −0.985 −0.235 −0.235 −0.985 −0.235 −0.235
rsc 2.595 16.9 18.8 2.12 17.8 19.8

Figure 2. Binding energy for the 1s state versusrs within the RPA for boson (solid line) and
fermion (dashed line) screening in 3D from the variational calculation. Our results from the matrix
diagonalization are shown as solid points.

3.3. Bound states including many-body effects: tb

Many-body effects described by the LFC play an important role for the binding energy. This
is demonstrated in figure 3 for the 1s state. At a given value ofrs , we find the largest binding
energy for the tb-interaction. The binding energy is smallest for the tt-interaction.

For the tb-interaction (and the RPA) the results for the binding energy of the 2s and the
2p state versusrs are shown in figure 4. The binding energy of the excited states vanishes for
rs near 12. Note that the 2s and 2p states are not degenerate. The screening effect breaks the
accidental degeneracy found in the hydrogen atom. In the unscreened limit forrs →∞, the
binding energy of the first excited states become−Ry∗/4 withκ = µ = a∗ as for the hydrogen
atom; see equations (8a–b). Higher excited states, 3s, 3p,. . . have notbeen found forrs < 50.
The variational parametersν, κ andµ increase with decreasingrs . For instance, within the
RPA for the 1s stateν increases froma∗/2 for rs →∞ to 0.69a∗ for rs = rsc = 2.6.

3.4. Bound states with the local field correction: tt

The results for the 1s state for the tt-interaction are shown in figure 3. The binding energies
are smaller than within the RPA. The 1s state is described by a hydrogenic-like wave function;
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Figure 3. Binding energy for the 1s state versusrs within the RPA (dashed line), the tb-interaction
(dashed–dotted line) and the tt-interaction (solid line) in 3D from the variational calculation. Our
results from the matrix diagonalization are shown as solid points.

Figure 4. Binding energy for the 2s and the 2p state versusrs for the tb-interaction and the RPA
in 3D from the variational calculation. Our results from the matrix diagonalization are shown as
solid points.

note the good agreement between the matrix diagonalization method and the variational
method.

With the variational wave functionφ2v(r) andφ3v(r) for the hydrogenic-like 2s and the
2p states we found no excited states forrs < 50. However, with the matrix method we found
excited states forrs > 22. Therefore we studiedVtt,sc(r) in detail. In fact, we found that due
to many-body effects the attractionVtt,sc(r) at r4 is strongly increased forrs > 1 compared
to the RPA result, see figure 5. There we have shownVtt,sc(r4) versusrs . Note that binding
energies larger than 10mRy∗ cannot be explained byVtt,sc(r4).
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Figure 5. Vtt,sc(r4) andr4 versusrs for 3D as solid lines. The dotted lines representVRPA(r4)

andr4 within the RPA according to equation (11).

Figure 6. Binding energy for the 2s- and the 2p-state versusrs for the tt-interaction in 3D from
the variational calculation as solid lines. Forrs < 52 (rs > 52) an oscillator wave function gives
a larger (smaller) binding energy than a hydrogenic wave function. Our results from the matrix
diagonalization for the 2s state are shown as solid points.

This suggested that the minimum of the potential atr4 might induce excited bound states
localized atr4. Such states are better characterized by a variational harmonic oscillator wave
function [5]

φ4v(r) = Ark1/2 exp(−r2/2α2) (12a)

with l = 1, 2, . . . The variational parameters arek1 andα. We denote these states 1p, 1d, . . .
becauseφ4v(r) has one node fork1 > 0. In order to describe states with two nodes andl = 0,
which corresponds to the 2s state, we use [5]

φ5v(r) = B(rk2/2 − Crk3/2) exp(−r2/2β2). (12b)

The variational parameters arek2, k3 andβ.
The binding energies for the 2s and the 1p state versusrs are shown in figure 6. For

rs < 52 the binding energies for the 2s state agree very well with the results of the matrix
diagonalization method. However, forrs > 52 the binding energies obtained with oscillator-
like wave functions were too small compared with the exact result. With hydrogenic-like
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wave function (2s and 2p) we found forrs > 52 perfect agreement with the results of the
matrix diagonalization method for the 2s state. We conclude that forrs < 52 the Coulomb
singularity atr = 0 is not strong enough to produce excited states and excited states are due
to the minimumVtt,sc(r4). However, forrs > 52 the excited states are hydrogenic-like states.

4. Results for two dimensions

4.1. The screened potential

In 2D the screened Coulomb interaction in the real space is given by

Vsc(r) = 1

2π

∫ ∞
0

dq qJ0(qr)Vsc(q). (13)

J0(x) is the zero-order Bessel function of the first kind.
Within the RPA in equation (13) and puttingx = rq2 one obtains for the screened potential

VRPA(x) = −2Ry∗

r
2/3
s

{
1

x
− 2

∫ ∞
0

dy J0(yx)/(1 +y3)

}
. (14)

The integral in equation (14) can be calculated analytically; it is expressed in terms of Bessel and
Struve functions. The energy scale ofVRPA(x) depends on Ry∗/r2/3

s , while the characteristic
lengthr0 is given byx0 = r0q2 ≈ 1: r0 ≈ 1/q2 ∝ r

2/3
s . As for 3D we find thatVRPA(r)

is characterized by (i) a bare Coulomb attraction at small distances, (ii) a reduction due to
screening at intermediate distances and (iii) oscillations at large distances.

VRPA(r) shows a Coulomb singularity forr → 0,VRPA(r1) = 0 for

r1/a
∗ = 0.586r2/3

s (15a)

it has a maximumVRPA(r2)/Ry∗ = 0.384/r2/3
s for r2/a∗ = 0.956r2/3

s , it vanishes again
VRPA(r3) = 0 for r3/a∗ = 3.302r2/3

s and it shows a minimum

VRPA(r4)/Ry∗ = −0.001 670/r2/3
s (15b)

for

r4/a
∗ = 3.816r2/3

s . (15c)

Vsc(r) versusr is shown in figure 7 forrs = 2. We conclude that in 2D many-body effects
are already very important forrs = 2. r1 andr2 are visible in figure 7.

Figure 7. Screened potentialVsc(r) versus distancer for rs = 2 in 2D. The solid and dashed-
dotted line represents the test-charge–test-charge (tt) and the test-charge–boson (tb) interaction,
respectively. The dashed line represents the RPA.
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4.2. Bound states within the RPA

The binding energies of the 1s state and the 2s and 2p states for some largers values are given
in table 2 for boson screening and electron screening. Forrs � 1 the binding energies are
nearly identical. As in the 3D case, this means that the quantum liquid statistics is almost
irrelevant at very low densities.

Table 2. Binding energies in 2D for the 1s, 2s and 2p state found by the variational method within
the RPA for screening by charged bosons and by charged fermions [5]. In the last row we give the
valuesrsc where the binding energy vanishes.

Boson Fermion
binding energy (Ry∗) binding energy (Ry∗)

rs 1s 2s 2p 1s 2s 2p

0.8 −0.136 — — −0.691 — —
1 −0.418 — — −0.802 — —
2 −1.390 — — −1.432 — —
5 −2.447 — — −2.411 — —

10 −2.990 — — −2.966 — —
30 −3.504 −0.030 −0.016 −3.496 −0.024 −0.009
40 −3.589 −0.085 −0.076 −3.584 −0.080 −0.071

100 −3.776 −0.232 −0.229 −3.774 −0.230 −0.228
1000 −3.952 −0.396 −0.396 −3.952 −0.396 −0.396

rsc 0.703 25.7 27.9 0 26.6 28.8

Figure 8. Binding energy for the 1s state versusrs within the RPA for charged boson (solid line)
and charged fermion (dashed line) screening in 2D from the variational calculation. Our results
from the matrix diagonalization are shown as solid points.

At high densityrs < 2, the BC screening is more efficient than the electron screening and
the binding energy vanishes at the critical density parameterrsc = 0.70; see figure 8. In fact,
for electron screening the binding energy remains finite at any density and tends to−0.56Ry∗

for smallrs [8]. The 2D Mott’s critical densityN2c, defined byN1/2
2c a

∗ = 1/π1/2rsc, results in
N

1/2
2c a

∗ = 0.80 for the 1s state. For the excited states the values ofrsc are given in table 2.

4.3. Bound states including many-body effects: tb

In figure 9 we show for the 1s state the effect of LFC on the binding energy. In 2D the binding
energy of the unscreened hydrogenic impurity is−4Ry∗ with ν = a∗/4 for the ground state.
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Figure 9. Binding energy for the 1s state versusrs within the RPA (dashed line), the tb-interaction
(dashed–dotted line) and the tt-interaction (solid line) in 2D from the variational calculation. Our
results from the matrix diagonalization are shown as solid points.

Figure 10. Binding energy for the 2s and the 2p state versusrs for the tb-interaction and the RPA
in 2D from the variational calculation. Our results from the matrix diagonalization are shown as
solid points.

This value is obtained forrs →∞ or q2→ 0. The LFC increases the binding energy for the
tb-interaction compared with the RPA. Correspondingly, the parameterrsc is smaller for the
tb-interaction than within the RPA.

The results for excited states are shown in figure 10.rsc is much higher for the excited
states than for the ground state. Forrs →∞ one gets the 2D bare Coulomb potential and the
energy of the first excited bound states is−4Ry∗/9 with κ = µ = 3a∗/4.

The variational parametersν, κ andµ increase with decreasingrs . Within the RPA and
for the 1s state,ν increases froma∗/4 for rs →∞ to 0.43a∗ for rs = rsc = 0.70.

4.4. Bound states with the local-field correction: tt

The results of the 1s state calculations for the tt-interaction are shown in figure 9. The binding
energies are smaller than within the RPA. The 1s state is described by the hydrogenic-like
wave function.
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The excited states calculations are somewhat more involved than for the tb-interaction.
Using the variational wave functionφ2v(r) andφ3v(r) for the hydrogenic 2s and the 2p states,
we obtained binding energies a factor of ten smaller than found within the diagonalization
method. The variational parametersκ and ν were found to be anomalously large. This
suggested to us that the excited states are more extended than what would be expected
for 2D ‘hydrogen’ states and that another variational form for the wave function should
be used. As in 3D, we also found in 2D that the LFC strongly deepens the minimum
of the screened potentialVtt,sc at r = r4 compared to the RPA result; see figure 11 and
compare withVRPA(r4)/Ry∗ = −0.001 670/r2/3

s , which cannot be shown on the scale used
in figure 11.

Figure 11. Vtt,sc(r4) andr4 versusrs for 2D as solid lines. The dotted line representsr4 within
the RPA according to equation (15c).

This means thatVtt,sc(r) leads to very extended excited states where the particle is
localized nearr4. Such states are better characterized by a variational harmonic oscillator
wave function [5]φ4v(r)with l = 1, 2, . . .. In order to describe the 2s state, we use [5]φ5v(r),
see equation (12).

The excited-state binding energies obtained with the wave functionsφ4v(r) andφ5v(r)

versusrs are shown in figure 12. The number of excited states 1p, 1d, 1e,. . . increases strongly
with increasingrs . This is becauseVeff (r) defined in section 2.3 becomes flatter around its
minimumr ≈ r4� a∗. Note that the 2s state has a larger binding energy than the 1p state. A
very good agreement is found between the matrix diagonalization method and the variational
method.

5. Discussion

5.1. General

This paper presents an extensive study of binding energies for the tt- and the tb-interaction
as a function of the charged BC density. The general expression of the screened potentials is
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Figure 12. Binding energy for excited states versusrs in 2D for the test-charge–test-charge
interaction using oscillator-like wave functions. The solid dots are the results obtained by matrix
diagonalization.

cumbersome and non-analytic and conveys different behaviours according to the distance from
the centre. Therefore, the results given forVRPA(r) are useful (i) to clarify these behaviours,
(ii) to characterize bound states in a non-trivial potential and (iii) to identify this potential as
a Coulomb potential screened by a charged BC.

The comparison of results for the binding energies obtained by the exact diagonalization
method with the variational method shows that the much simpler variational method gives very
good results not only for the ground state but also for excited states. Only for small binding
energies nearrsc does the variational method give binding energies substantially smaller than
the exact matrix diagonalization method, see figure 2 and figure 8.

At low enough densities, no significant difference is found between boson screening
and electron screening; see table 1 and table 2. For the Bose condensate in 3D the
screening function is given byεRPA(q) = 1 + q4

3/q
4. For the electron gas in 3D one finds

εRPA(q � 2kF ) = 1 + 4kF /a∗q2 = 1 +q2
T F3/q

2 andεRPA(q � 2kF ) = 1 +q4
3/q

4. kF is the
Fermi wave number andqT F3 is the Thomas–Fermi screening wavenumber in 3D. For the Bose
condensate in 2D the screening function is given byεRPA(q) = 1 +q3

2/q
3. In 2D one finds for

the electron gasεRPA(q � 2kF ) = 1+2/a∗q = 1+qT F2/q andεRPA(q � 2kF ) = 1+q3
2/q

3.
Because of the agreement of the binding energies we conclude that for largers the binding
energies of the electron gas are determined byεRPA(q � 2kF ) and the screening functions of
an electron gas and a Bose condensate are identical for large wave numbers. This means that
for an electron gas and for largers the binding energy of a screened impurity is determined by
qd , as for a Bose condensate, independent ofqT Fd .

This is explained by the fact that bound states are short-distance phenomena, where
the dielectric function for boson screening is identical to the dielectric function for electron
screening. These arguments can also be applied to the tb-interaction and the tt-interaction
because the difference between the LFC for electron and boson systems becomes small for
largers [27].
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5.2. Unexpected results

We found two unexpected results. Screening effects of a 2D-BC may be strong enough to
make the binding energy of a hydrogenic state vanish; see figure 8 and figure 9. This is a
qualitative new behaviour as compared to 2D electron screening, where the binding energy
remains finite [8]. It was sometimes argued in the literature that a bound state exists in 2D
whenever there is an attractive potential, independently of its strength. In fact, this is only true
for a short-range potential. For a long-range potential we conclude from the present study that
for rs < rsc even a Coulomb attraction at small distances is not sufficient to guarantee a bound
state in the presence of charged BC screening.

The results shown in figure 12 for the tt-interaction indicate that the nature of excited
states in 2D changes if the LFC is taken into account. Within the variational calculation using
the 2s and the 2p variational wave function of hydrogen type, the very large values obtained
for the variational parameters indicated that some qualitative new phenomenon must occur for
the tt-interaction. In fact, the variational calculation with Gaussian envelope wave functions
was found to be in good agreement with the numerical results, pointing to the oscillator nature
of the effective potential for the excited states.

For the tt-interaction in 3D we did not find excited bound states forrs < 22. It might be
quite interesting for statistical mechanics to know that in a large density range (0< rs < 22)
only one bound state exists and excited states are absent. Our results for the excited states of
the tt-interaction in 3D forrs > 22, shown in figure 6, and the transition from oscillator-like
wave functions to hydrogenic-like wave functions with increasingrs illustrates the power of
the variational approach.

We also mention that according to our knowledge excited states for the tt-interaction
in 3D have not yet been studied for electron screening. We expect that a similar
behaviour for excited states as found for boson screening occurs in systems with electron
screening.

5.3. Critical density parameterrsc

In table 3 we summarize the values forrsc where the binding energy for the ground state and
the excited states vanishes. The values ofrsc for 2D are smaller than for 3D, which indicates
that screening effects are less efficient in 2D than in 3D. We also notice that thersc-values
obtained with the matrix diagonalization method are smaller than thersc-values obtained with
the variational method. The results given in table 3 are calculated with hydrogenic variational
wave functions.

Table 3. Critical Wigner–Seitz parameterrsc for the 1s, 2s and 2p state found by the variational
method for 2D and 3D, within RPA, the tb- and the tt-interaction. The values in brackets represent
our results forrsc for the 1s state obtained using the matrix diagonalization method.

rsc for d = 3 rsc for d = 2

1s 2s 2p 1s 2s 2p

test–test (tt) 3.13 [2.7] 50.6 52.3 1.01 [0.6] 7.1 11.3
RPA 2.60 [2.23] 16.9 18.8 0.70 [0.35] 25.7 27.9
test–boson (tb) 2.33 [2.1] 12.3 13.1 0.62 [0.3] 10.8 10.9

Thersc-values given in table 4 for the tt-interaction in 3D and 2D represent, for the excited
states, the values obtained with the oscillator variational wave functions; see figure 6 for 3D
and figure 12 for 2D.
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Table 4. Critical Wigner–Seitz parameterrsc for the 1s, 2s and 1p state found by the variational
method for 3D and 2D for the test-charge–test-charge interaction. The 2s and 1p state corresponds
to oscillator variational wave functions. The values in brackets represent our results obtained using
the matrix diagonalization method, see figure 6 for 3D and figure 12 for 2D.

State 1s 2s 1p

rsc for tt for d = 3 3.13 [2.7] 25.5 [22] 29
rsc for tt for d = 2 1.01 [0.6] 7.1 [6.0] 8.2 [7.5]

With thersc-value one can calculate the Mott densityNdc. The different values ofrsc for
the RPA, the tb- and the tt-interactions are due to exchange–correlation effects as given by the
LFC. To our knowledge, the existence of such critical densities for binding with charged boson
screening has never been studied in the literature. We found that the charged BC screening
is stronger than the electron screening under the same conditions of dimensionality and gas
density.

5.4. Application

The calculation of the screened potential, see figure 1 and figure 7, demonstrates that forrs > 1
the LFC must be taken into account in order to give a realistic description of the interaction
potential. Many-body effects are somewhat stronger in 2D than in 3D.

Our calculation is of interest to understand the difference between electron and boson
screening, studied as the reduction of the binding energies of hydrogenic impurities. If we
take the charged BC as a simple model to describe a superconductor we conclude from our
calculations that the binding energies for largers are not modified by the presence of a BC.
However, the Mott density is modified, especially if we consider a 2D system.

The presence of a BC might be the origin in a hypothetical experiment on a 2D electron
system where the vanishing of the binding energy is observed forrs < rsc ≈ 0.4.

We also have considered the case of two equally charged test-particles screened by a Bose
condensate. The results of these calculations are reported elsewhere [28].

6. Conclusion

We discussed screening effects on hydrogenic bound states due to a charged Bose condensate in
three and two dimensions. Screening effects of the Bose condensate reduce the binding energy
of the hydrogenic bound states. The random-phase approximation, the test-charge–boson and
test-charge–test-charge interactions were discussed in detail.

In the very dilute limit (for very low density), the differences in binding energies with
electron or boson screening are small. However, when the binding energy becomes small
(for higher density), boson screening is found to be more efficient than electron screening.
In addition, with charged Bose condensate screening, no bound state exists beyond a critical
density in both 3D and 2D.
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